Dynamics of Birational Maps of P
نویسندگان
چکیده
Inspired by work done for polynomial automorphisms, we apply pluripotential theory to study iteration of birational maps of P2. A major theme is that success of pluripotential theoretic constructions depends on separation between orbits of the forward and backward indeterminacy sets. In particular, we show that a very mild separation hypothesis guarantees the existence of a plurisubharmonic escape function G̃+ and the induced current μ+. We show that under normalized pullback by the birational map, a large class of currents are attracted to μ+. Under stronger separation hypotheses, we establish relationships between the set of normality, stable manifolds of saddle periodic points, and the support of μ+. We illustrate this work in the more concrete setting of quadratic polynomial maps of C2 with merely rational inverses.
منابع مشابه
Fe b 20 15 Lie Symmetries of Birational Maps Preserving
We prove that any planar birational integrable map, which preserves a fibration given by genus 0 curves has a Lie symmetry and some associated invariant measures. The obtained results allow to study in a systematic way the global dynamics of these maps. Using this approach, the dynamics of several maps is described. In particular we are able to give, for particular examples, the explicit expres...
متن کاملar X iv : m at h / 02 05 33 5 v 1 [ m at h . Q A ] 3 1 M ay 2 00 2 Yang - Baxter maps and integrable dynamics
The hierarchy of commuting maps related to a set-theoretical solution of the quantum Yang-Baxter equation (Yang-Baxter map) is introduced. They can be considered as dynamical analogues of the monodromy and transfer-matrices. The general scheme of producing Yang-Baxter maps based on matrix factorisation is described. Some examples of birational Yang-Baxter maps appeared in the KdV theory are dis...
متن کاملYang-Baxter maps and integrable dynamics
The hierarchy of commuting maps related to a set-theoretical solution of the quantum Yang-Baxter equation (Yang-Baxter map) is introduced. They can be considered as dynamical analogues of the monodromy and/or transfer-matrices. The general scheme of producing Yang-Baxter maps based on matrix factorisation is discussed in the context of the integrability problem for the corresponding dynamical s...
متن کاملBirational Maps between Calabi-yau Manifolds Associated to Webs of Quadrics
We consider two varieties associated to a web of quadrics W in P. One is the base locus and the second one is the double cover of P branched along the determinant surface of W . We show that small resolutions of these varieties are Calabi-Yau manifolds. We compute their Betti numbers and show that they are not birational in the generic case. The main result states that if the base locus of W co...
متن کامل5 J ul 2 00 2 Yang - Baxter maps and integrable dynamics February 1 , 2008
The hierarchy of commuting maps related to a set-theoretical solution of the quantum Yang-Baxter equation (Yang-Baxter map) is introduced. They can be considered as dynamical analogues of the monodromy and/or transfer-matrices. The general scheme of producing Yang-Baxter maps based on matrix factorisation is discussed in the context of the integrability problem for the corresponding dynamical s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005